

Analysis of submitted breeding values and applied methods

M. Szydłowski, S. Mucha, <u>M. Pszczoła</u>, T. Strabel, A. Wolc

Common task

Predict breeding values for young individuals without phenotypes

• 11 teams provided results for qunatitative (QT) and 6 for binary trait (BT)

True Breeding Value

• QT:

```
TBV = \sum [30 \text{ additive QTLs}] +
```

- + haplotype effects (QTLs pairs 31-32 and 33-34) +
- + the effects of imprinted QTLs (for males only).

• BT:

TBV = \sum 22 additive QTLs.

Methods used by Participants

- BLUP:
 - PBLUP(pedigree; univariate and bivariate),
 - TA-BLUP(specific relationship matrix),
 - G(enomic)BLUP (univariate and bivariate)
 - RR-BLUP ridge regression
 - Spatial
- Bayes A,B,C (univariate and bivariate)
- PLSR
- Double Hierarchical Generalized Linear Models (DHGLM)
- Machine learning: Support vector, Boosting, Genome-wide Rapid Association

Comparison criteria

 Accuracy - Pearson correlation between TBV and EBV

• **Regression** - linear regression coefficient TBV on EBV

 MSD - mean square difference (TBV-EBV) after correcting for mean

Comparison criteria cont.

• Ranking comparison:

- **Shared** percentage of IDs shared between the groups of young individuals selected on TBV and EBV
- Loss % of loss of response to selection when 10% are selected based on EBV instead of TBV

Accuracy of EBV - examples

Poznań University of Life Sciences

MAS Accuracy and regression

QΤ

MSD

QT

Shared

Loss (%)

QΤ

Ranking of the best group*methods based on all measurements

QT

- 1. Nadaf et al. BayesB SNP
- 2. Sun et al. Bayes Cpi
- 3. Nadaf et al. BayesB SNP+P
- 4. Zhang et al. BayesB
- 5. Zhang et al. TA-BLUP 500
- 6. Zhang et al. TA-BLUP
- 7. Calus et al. BayesC_bivar
- 8. Calus et al. BayesC_univar
- 9. Calus et al. BayesA_bivar
- 10. Schulz-Streeck et al. RR
- 11. Calus et al. GBLUP_bivar
- 12. Schulz-Streeck et al. Spatial

- 13. Calus et al. BayeaA_univar
- 14. Calus et al. GBLUP_univar
- 15. Shen et al. DHGLM
- 16. Nadaf et al. BLUP SNP+P
- 17. Nadaf et al. BLUP SNP
- 18. Ogutu et al. Boosting
- 19. Calus et al. PBLUP_univar
- 20. Ogutu et al. Support vector
- 21. Calus et al. PBLUP_bivar
- 22. Zukowski et al. GBLUP
- 23. Coster and Calus PLSR

Accuracy and regression

MSD

BT

Shared

BT

Loss (%)

Ranking of the best group*methods based on all measurements

BT

- Calus et al. BayesC_bivar
- 2. Calus et al. BayesA_bivar
- 3. Nadaf et al. BayesB SNP
- 4. Nadaf et al. BayesB SNP+P
- 5. Calus et al. GBLUP_bivar
- 6. Calus et al. BayesC_univar
- 7. Calus et al. BayesA_univar
- 8. Calus et al. GBLUP_univar
- 9. Shen et al. DHGLM
- 10. Nadaf et al. BLUP SNP+P

- 11. Nadaf et al. BLUP SNP
- 12. Zukowski et al. GBLUP
- 13. Calus et al. PBLUP_bivar
- 14. Calus et al. PBLUP_univar
- 15. Coster and Calus PLSR

Summary

- For QT:
 - BayesB, TA-BLUP, BayesC, RR-BLUP > GBLUP, Spatial, BayesA > PBLUP, Machine Learning
- For BT:
 - BayesC, BayesB, BayesA, GBLUP > Other methods
- Bivariate > Univariate for the same method

Bayes and TA-BLUP methods better for complex genetic architecture

Poznań University of Life Sciences

Thank you for sharing the results !!!

Congratulations to the authors !!!

